МАТЕРИАЛИЗАЦИЯ ПРЕДМЕТОВ (часть 2)


Приветствую вас, уважаемые студенты вуза Аргемоны!

Сегодня мы продолжим учиться материализации предметов. В прошлый раз мы вращали плоские фигуры и получали объёмные тела. Некоторые из них - очень даже заманчивые и полезные. Думаю, что многому, что изобретает маг, можно в дальнейшем найти применение.

Сегодня мы будет вращать кривые. Понятно, что таким образом мы можем получить какой-то предмет с очень тонкими гранями (колбочка или флакон для зелий, ваза для цветов, стакан для напитков и т.п.), потому как вращающаяся кривая именно такого рода предметы и может сотворить. Другими словами, вращением кривой мы можем получить какую-то поверхность - замкнутую со всех сторон или нет. Почему прямо сейчас вспомнилась дырявая чаша, из которой всё время пил сэр Шурф Лонли-Локли.

Вот мы и сотворим дырявую чашу и недырявую, и подсчитаем площадь сотворённой поверхности. Думаю, для чего-то она (вообще площадь поверхности) ведь будет нужна - ну хотя бы для нанесения специальной магической краски. А с другой стороны, площади магических артефактов могут потребоваться для расчёта приложенных к ним магических сил или ещё чего-то. Мы научимся это находить, а уж где применить - найдём.

Итак, форму чаши вполне нам может дать кусок параболы. Возьмём самую простейшую y=x2 на промежутке [1;2]. Видно, что при вращении её вокруг оси OY получается как раз чаша. Без дна.

Поверхность вращения

Заклинание для расчёта площади поверхности вращения выглядит следующим образом:

Площадь поверхности вращения

Здесь |y| - это расстояние от оси вращения до любой точки кривой, которая вращается. Как известно, расстояние - это перпендикуляр.
Немного труднее со вторым элементом заклинания: ds - это дифференциал дуги. Эти слова нам ничего не дают, поэтому не будем заморачиваться, а перейдём на язык формул, где этот дифференциал явно представлен для всех известных нам случаев:
- декартовой системы координат;
- записи кривой в параметрическом виде;
- полярной системы координат.

Расчёт дифференциалов дуг

Для нашего случая расстояние от оси вращения до любой точки на кривой равно х. Считаем площадь поверхности получившейся дырявой чаши:

Расчёт площади поверхности вращения

Чтобы сделать чашу с дном, нужно взять ещё кусочек, но другой кривой: на интервале [0; 1] это линия y=1.

Поверхность вращения

Ясно, что при её вращении вокруг оси OY получится донышко чаши в виде круга единичного радиуса. И мы знаем, как считается площадь круга (по формуле пи*r^2. Для нашего случая площадь круга будет равна пи), но вычислим его по новой формуле - для проверки.
Расстояние от оси вращения до любой точки этого кусочка кривой также равно х.

Расчёт площади поверхности вращения

Ну вот, расчёты наши верны, что радует.

А теперь домашнее задание.

1. Найти площадь поверхности, полученной вращением ломаной ABC, где A=(1; 5), B=(1; 2), C=(6; 2), вокруг оси ОХ.
Совет. Записать все отрезки в параметрическом виде.
AB: x=1, y=t, 2≤t≤5
BC: x=t, y=2, 1≤t≤6
Кстати, на что похож получившийся предмет?

2. Ну а теперь придумайте что-то сами. Трёх предметов, думаю, хватит.

Удачи!



Отправляйте работы через ЛИЧНЫЙ КАБИНЕТ
Свои вопросы смело можете передать с Персефоной Персефона